Electricity Forum Electricity Today Magazine Arc Flash Training

Transformer Protection


Solid-State Transformer Protection: A Game Changer?

The advent of solid-state transformer (SST) technology marks a significant evolution in the field of electrical transformer protection. Moving beyond the limitations of conventional oil-filled transformers, SSTs offer a promising alternative, boasting enhanced efficiency, reliability, and a host of...

Motor Protection


Motor Protection Relay Advancements Explained

Motor Protection Relays (MPRs) are evolving rapidly, integrating cutting-edge technologies to offer superior protection for motors in various industrial applications. These advancements not only enhance the reliability and efficiency of motor operation but also bring sophisticated diagnostic and...

Overcurrent and Short Circuit Protection


Generator Protection


Integration of Generator Predictive Maintenance

The reliable and efficient operation of power grids relies heavily on the effective protection of generators. Traditionally, generator protection focused on reacting to faults after they occur. However, advancements in sensor technology, data analytics, and machine learning are enabling a paradigm...

Cybersecurity for Protective Devices


Enhancing Cybersecurity with AI and Machine Learning

The ever-increasing reliance on interconnected electrical systems necessitates robust cybersecurity measures to safeguard critical infrastructure from cyberattacks. Artificial intelligence (AI) and machine learning (ML) technologies are emerging as powerful tools in this fight, offering new...

Lightning Protection Systems


Electrical Protection

Zero-Trust Security: Securing Electrical Protection

The ever-increasing reliance on interconnected electrical protection systems necessitates a robust cybersecurity posture. Traditional perimeter-based security models, which rely on strong external defenses, have proven insufficient against sophisticated cyberattacks. Zero-trust security offers a new paradigm for securing electrical protection systems by emphasizing continuous verification and least privilege access control.This article explores the principles of zero-trust security and its application in securing electrical protection systems to minimize attack surfaces and prevent lateral movement within networks.

Visit Our Electrical Protection Study Course

 

Understanding Zero-Trust Security

Zero-trust is a security model that operates on the principle of "never trust, always verify." Unlike traditional security models that enforce stringent defenses at the perimeter but assume trust within, zero-trust treats all users, devices, and network flows as potentially hostile, requiring verification at every stage of digital interaction.

Core Principles of Zero-Trust

  • Least Privilege Access: Granting users and devices the minimum level of access necessary to perform their functions.
  • Microsegmentation: Dividing networks into smaller, isolated segments to limit unauthorized access and reduce the attack surface.
  • Continuous Verification: Regularly verifying the security status of devices and users, irrespective of their location or access level.

Application in Electrical Protection Systems

Implementing zero-trust security in electrical protection systems...

Electrical Protection Articles