Electricity Forum Electricity Today Magazine Arc Flash Training

Lightning Protection Systems


Maintaining System Effectiveness: Inspection, Testing, and Upkeep

Lightning protection systems (LPS) play a critical role in safeguarding structures, equipment, and personnel from the damaging effects of lightning strikes. However, even the most well-designed LPS can lose its effectiveness if not properly maintained. Regular inspections, testing, and upkeep are...

Overcurrent and Short Circuit Protection


Cybersecurity for Protective Devices


Securing Communication and Data Integrity

The ever-growing complexity of electrical grids, with their increasing reliance on interconnected communication and data exchange, necessitates robust cybersecurity measures. Traditional security solutions struggle to keep pace with the evolving sophistication of cyberattacks targeting critical...

Generator Protection


Digital Protection Relays for Generators

The reliable operation of power grids hinges on the effective protection of generators. Traditional electromechanical relays have served this purpose for decades, but they have limitations in terms of functionality, flexibility, and communication capabilities. Digital protection relays, powered by...

Transformer Protection


Solid-State Transformer Protection: A Game Changer?

The advent of solid-state transformer (SST) technology marks a significant evolution in the field of electrical transformer protection. Moving beyond the limitations of conventional oil-filled transformers, SSTs offer a promising alternative, boasting enhanced efficiency, reliability, and a host of...

Motor Protection


Compatibility Issues with Generator-Backed Power Systems

Line-interactive uninterruptible power supply (UPS) systems play a vital role in maintaining seamless operation during power outages. Their integration with backup generators, however, can pose challenges regarding synchronization and power quality. While both UPS systems and generators serve as...

Electrical Protection

Zero-Trust Security: Securing Electrical Protection

The ever-increasing reliance on interconnected electrical protection systems necessitates a robust cybersecurity posture. Traditional perimeter-based security models, which rely on strong external defenses, have proven insufficient against sophisticated cyberattacks. Zero-trust security offers a new paradigm for securing electrical protection systems by emphasizing continuous verification and least privilege access control.This article explores the principles of zero-trust security and its application in securing electrical protection systems to minimize attack surfaces and prevent lateral movement within networks.

Visit Our Electrical Protection Study Course

 

Understanding Zero-Trust Security

Zero-trust is a security model that operates on the principle of "never trust, always verify." Unlike traditional security models that enforce stringent defenses at the perimeter but assume trust within, zero-trust treats all users, devices, and network flows as potentially hostile, requiring verification at every stage of digital interaction.

Core Principles of Zero-Trust

  • Least Privilege Access: Granting users and devices the minimum level of access necessary to perform their functions.
  • Microsegmentation: Dividing networks into smaller, isolated segments to limit unauthorized access and reduce the attack surface.
  • Continuous Verification: Regularly verifying the security status of devices and users, irrespective of their location or access level.

Application in Electrical Protection Systems

Implementing zero-trust security in electrical protection systems...

Electrical Protection Articles