Electricity Forum Electricity Today Magazine Arc Flash Training

Motor Protection


Setting Motor Protection Relays for Different Starting Methods

Motor Protection Relays (MPRs) play a vital role in safeguarding motors from electrical and mechanical stresses. The starting method employed for a motor significantly influences its starting characteristics and protection requirements. Properly setting MPRs according to the starting method is...

Generator Protection


The Evolution of Generator Fault Detection

The reliable operation of power grids hinges on the ability to detect and isolate faults within generators promptly. Over time, fault detection methodologies have evolved significantly, with advancements in technology leading to more accurate, sophisticated, and intelligent approaches. This article...

Lightning Protection Systems


Design and Installation Challenges

Lightning strikes pose a significant threat to structures and electrical equipment. A well-designed and installed lightning protection system (LPS) is crucial to safeguard buildings, infrastructure, and personnel from the damaging effects of lightning strikes. However, designing and installing...

Cybersecurity for Protective Devices


Enhancing Cybersecurity with AI and Machine Learning

The ever-increasing reliance on interconnected electrical systems necessitates robust cybersecurity measures to safeguard critical infrastructure from cyberattacks. Artificial intelligence (AI) and machine learning (ML) technologies are emerging as powerful tools in this fight, offering new...

Transformer Protection


Improving Grid Stability

Electrical transformers are vital components in power transmission and distribution systems, stepping up or down voltage levels to efficiently deliver electricity. However, these transformers are susceptible to various internal and external faults that can lead to catastrophic damage and widespread...

Overcurrent and Short Circuit Protection


The Evolution of Circuit Breaker Technology

Circuit breakers play a critical role in overcurrent and short circuit protection within electrical systems. Their function is to interrupt the flow of current when it exceeds safe limits, preventing equipment damage and potential fires. Over the past century, circuit breaker technology has...

Electrical Protection

Zero-Trust Security: Securing Electrical Protection

The ever-increasing reliance on interconnected electrical protection systems necessitates a robust cybersecurity posture. Traditional perimeter-based security models, which rely on strong external defenses, have proven insufficient against sophisticated cyberattacks. Zero-trust security offers a new paradigm for securing electrical protection systems by emphasizing continuous verification and least privilege access control.This article explores the principles of zero-trust security and its application in securing electrical protection systems to minimize attack surfaces and prevent lateral movement within networks.

Visit Our Electrical Protection Study Course

 

Understanding Zero-Trust Security

Zero-trust is a security model that operates on the principle of "never trust, always verify." Unlike traditional security models that enforce stringent defenses at the perimeter but assume trust within, zero-trust treats all users, devices, and network flows as potentially hostile, requiring verification at every stage of digital interaction.

Core Principles of Zero-Trust

  • Least Privilege Access: Granting users and devices the minimum level of access necessary to perform their functions.
  • Microsegmentation: Dividing networks into smaller, isolated segments to limit unauthorized access and reduce the attack surface.
  • Continuous Verification: Regularly verifying the security status of devices and users, irrespective of their location or access level.

Application in Electrical Protection Systems

Implementing zero-trust security in electrical protection systems...

Electrical Protection Articles